Contextual Collaborative Filtering via Hierarchical Matrix Factorization
نویسندگان
چکیده
Matrix factorization (MF) has been demonstrated to be one of the most competitive techniques for collaborative filtering. However, state-of-the-art MFs do not consider contextual information, where ratings can be generated under different environments. For example, users select items under various situations, such as happy mood vs. sad, mobile vs. stationary, movies vs. book, etc. Under different contexts, the preference of users are inherently different. The problem is that MF methods uniformly decompose the rating matrix, and thus they are unable to factorize for different contexts. To amend this problem and improve recommendation accuracy, we introduce a “hierarchical” factorization model by considering the local context when performing matrix factorization. The intuition is that: as ratings are being generated from heterogeneous environments, certain user and item pairs tend to be more similar to each other than others, and hence they ought to receive more collaborative information from each other. To take the contextual information into consideration, the proposed “contextual collaborative filtering” approach splits the rating matrix hierarchically by grouping similar users and items together, and factorizes each sub-matrix locally under different contexts. By building an ensemble model, the approach further avoids over-fitting with less parameter tuning. We analyze and demonstrate that the proposed method is a model-averaging gradient boosting model, and its error rate can be bounded. Experimental results show that it outperforms three state-of-the-art algorithms on a number of real-world datasets (MovieLens, Netflix, etc). The source code and datasets are available for download.
منابع مشابه
Dynamic Bayesian Probabilistic Matrix Factorization
Collaborative filtering algorithms generally rely on the assumption that user preference patterns remain stationary. However, real-world relational data are seldom stationary. User preference patterns may change over time, giving rise to the requirement of designing collaborative filtering systems capable of detecting and adapting to preference pattern shifts. Motivated by this observation, in ...
متن کاملCollaborative Filtering via Rating Concentration
While most popular collaborative filtering methods use low-rank matrix factorization and parametric density assumptions, this article proposes an approach based on distribution-free concentration inequalities. Using agnostic hierarchical sampling assumptions, functions of observed ratings are provably close to their expectations over query ratings, on average. A joint probability distribution o...
متن کاملHierarchical Compound Poisson Factorization
Non-negative matrix factorization models based on a hierarchical Gamma-Poisson structure capture user and item behavior effectively in extremely sparse data sets, making them the ideal choice for collaborative filtering applications. Hierarchical Poisson factorization (HPF) in particular has proved successful for scalable recommendation systems with extreme sparsity. HPF, however, suffers from ...
متن کاملA Novel Non-Negative Matrix Factorization Method for Recommender Systems
Recommender systems collect various kinds of data to create their recommendations. Collaborative filtering is a common technique in this area. This technique gathers and analyzes information on users preferences, and then estimates what users will like based on their similarity to other users. However, most of current collaborative filtering approaches have faced two problems: sparsity and scal...
متن کاملQoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering
Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...
متن کامل